Bayesian Orthogonal Component Analysis for Sparse Representation
نویسندگان
چکیده
منابع مشابه
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the ...
متن کاملFlexible Component Analysis for Sparse, Smooth, Nonnegative Coding or Representation
In the paper, we present a new approach to multi-way Blind Source Separation (BSS) and corresponding 3D tensor factorization that has many potential applications in neuroscience and multi-sensory or multidimensional data analysis, and neural sparse coding. We propose to use a set of local cost functions with flexible penalty and regularization terms whose simultaneous or sequential (one by one)...
متن کاملBayesian Hypothesis Testing for Sparse Representation
In this paper, we propose a Bayesian Hypothesis Testing Algorithm (BHTA) for sparse representation. It uses the Bayesian framework to determine active atoms in sparse representation of a signal. The Bayesian hypothesis testing based on three assumptions, determines the active atoms from the correlations and leads to the activity measure as proposed in Iterative Detection Estimation (IDE) algori...
متن کاملImproving Sparse Representation-Based Classification Using Local Principal Component Analysis
Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2010
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2010.2041594